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TRIGONOMETRIC WAVELETS 
FOR HERMITE INTERPOLATION 

EWALD QUAK 

ABSTRACT. The aim of this paper is to investigate a multiresolution anal- 
ysis of nested subspaces of trigonometric polynomials. The pair of scaling 
functions which span the sample spaces are fundamental functions for Her- 
mite interpolation on a dyadic partition of nodes on the interval [0, 27r). Two 
wavelet functions that generate the corresponding orthogonal complementary 
subspaces are constructed so as to possess the same fundamental interpola- 
tory properties as the scaling functions. Together with the corresponding dual 
functions, these interpolatory properties of the scaling functions and wavelets 
are used to formulate the specific decomposition and reconstruction sequences. 
Consequently, this trigonometric multiresolution analysis allows a completely 
explicit algorithmic treatment. 

1. INTRODUCTION 

Trigonometric polynomials - being the simplest periodic analytic functions - 
have recently become the object of investigations from the point of view of wavelet 
theory. For the basic terminology and fundamental concepts of wavelets, the 
reader is referred to the monograph of C. K. Chui [3]. A multiresolution analysis 
for 2Xr-periodic square-integrable functions consisting of finite-dimensional nested 
spaces of trigonometric polynomials was first studied in a paper by C. K. Chui and 
H. N. Mhaskar [4]. Their scaling functions and wavelets, however, do not possess in- 
terpolatory properties. Alternatively, a trigonometric multiresolution analysis can 
be based on fundamental functions of Lagrange interpolation. Trigonometric inter- 
polants have a long history in approximation theory (see [14] and [17, Chapter 10]). 
Recently, A. A. Privalov [14] used specific interpolants to tackle the problem of 
finding orthogonal trigonometric polynomial bases of minimal degree for the space 
of 2,r-periodic continuous functions. His results were then improved by D. Offin 
and K. Oskolkov [10], who used a periodized wavelet basis, and the final answer 
was given by R. A. Lorentz and A. A. Sahakian [9], who adopted a wavelet packet 
approach. Using Privalov's interpolants from [14], J. Prestin and E. Quak [11] 
explicitly computed the basis transformations connecting the spaces of trigonomet- 
ric scaling functions and wavelets. The corresponding transformation matrices have 
circulant structure, thus giving rise to efficient decomposition and reconstruction al- 
gorithms that can be implemented using Fast Fourier Transform techniques. Prestin 
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and Quak also formulated the duality principle for this trigonometric multiresolu- 
tion analysis [12] and considered the decay rates for the trigonometric interpolatory 
scaling functions and wavelets [13]. 

Recently, Y. W. Koh, S. L. Lee and H. H. Tan [8] presented a general approach to 
non-stationary multiresolution analysis of the space of square-integrable 27r-periodic 
functions, which contains the trigonometric wavelets of Chui and Mhaskar [4] as 
a special case. It remains to be investigated how the trigonometric interpolatory 
wavelets of [11-14] fit into their framework and how their approach may be adapted 
to the use of two (or more) different types of scaling functions and wavelets in the 
respective sample and wavelet spaces. This paper describes one particular situation 
where two different scaling functions arise quite naturally, namely in trigonometric 
interpolation of Hermite data. 

Other Hermite-type functions, which are not trigonometric polynomials, have 
already been studied in a wavelet context. For instance, P. Auscher [1] considers 
wavelets with boundary conditions on an interval based on cardinal Hermite B- 
spline functions, and T. N. T. Goodman [7] proves the existence of interpolatory 
Hermite spline wavelets on the real axis based on the B-spline theory of Schoen- 
berg and Sharma. Trigonometric interpolants, however, as in the Lagrange case, 
enable a completely explicit description of the corresponding decomposition and 
reconstruction coefficients by means of circulant matrices. 

In ?2 of this paper, two different types of trigonometric scaling functions are 
constructed: one type whose function values in dyadic points are the fundamental 
Kronecker data and whose first derivatives in these points are all zero, and the other 
type for which the function values are all zero and the first derivatives are given by 
the Kronecker data. Certainly, these interpolants are well known, but for the sake 
of completeness and for later use, basic notations and properties are reviewed. The 
sample spaces spanned by these interpolants are identified as the same ones that 
were used by Chui and Mhaskar [4], but now the two different types of interpolatory 
scaling functions give rise to a Hermite interpolation operator instead of the quasi- 
interpolation operator defined in [4]. 

In ?3, the trigonometric wavelets are constructed, which span the relative orthog- 
onal complements for the sample spaces. These wavelets show the same interpola- 
tory Hermite properties as the scaling functions and thus constitute high-frequency 
interpolants of the fundamental data, whereas the scaling functions on the same 
level can be considered as low-frequency interpolants. This is maybe the most in- 
teresting result in this context, as the wavelets for the Lagrange interpolants in [11] 
do not have this property - they interpolate the fundamental Lagrange data in the 
midpoints of the original knots. 

The interpolation properties help to derive the two-scale (or reconstruction) rela- 
tions for the Hermite multiresolution analysis in ?4. A concise matrix representation 
using circulants is also given at this point. As usual in this context, the decomposi- 
tion relations need more effort. First, in ?5, the inner product matrix of the scaling 
functions is explicitly computed as well as the entries of its inverse, which are the 
coefficients of the biorthogonal bases of dual functions. The usefulness of these dual 
functions - as described in [3] and [5] for functions on the real axis - can be seen in 
?6, where they are used to establish the more complicated decomposition relations. 
Finally, ?7 provides a short numerical example illustrating practical results and 
offers a discussion of open questions. The Appendix was added to provide some 



TRIGONOMETRIC HERMITE WAVELETS 685 

background material concerning an error estimate (similar to the one in [4]) for the 
Hermite interpolation operator of ?2. 

2. INTERPOLATORY HERMITE-TYPE SCALING FUNCTIONS 

For f E N, the Dirichlet kernel De E Te and the conjugate Dirichlet kernel 
De E Te are defined as 

(sin(e+-!) 

(2.1) Dt(x) = + Ecoskx = { 2sin forx 
2 k=1 1+ 

I 
forxE2r2, 

and 

- e ( cosx-co*s(?+)x for x27rZ, 
(2.2) De(x) = Z sinkx = 2 sin 2 forxE 2r 

k=1 0 forxE2ir2, 
where Te denotes the linear space of trigonometric polynomials of degree t. 

Following Zygmund [17, Vol. I, p.49], we recall that these kernels allow represen- 
tation formulae for Fourier sums. In fact, let us start with the ith partial Fourier 
sum 

e 
Se(f)(x) = 2?+ZE(ak cos kx + bk sin kx), 

k=1 

where 

ak =- f(t) cos ktdt and bk = f (t) sin ktdt 

are the usual Fourier coefficients of a function f E L22X, i.e., a square-integrable 
27r-periodic function. Then the conjugate ith partial sum is defined as 

e 

St(f )(X) = (ak sin kx-bk cos kx), 
k=1 

and it follows that for any x E [0, 27r] 

1 2r7r 
(2.3) Se(f)(x) = - I f(t)De(t - x)dt = 2(f(.), De( - x)) 

and 
1 

(2.4) Se(f)(x) =-- f (t)De(t - x)dt = -2(f(.), D(.-x)). 

Here and throughout, the inner product (,.) of two functions f and g in L 2 is 
defined, as usual, by (f, g) = 

2 f f (x)g(x) dx. 
The nodes for the interpolation processes of this section are equally spaced on 

the interval [0, 27r) with a dyadic step size, i.e., 

nru 
Xj,n = for any j E No and n = 0, 2i+1-1. 

In the following, the relations between the nodes on consecutive levels such as 
Xj,n = Xj+1,2n or 'the midpoint of Xj,n and Xi,n+l is Xj+1,2n+1' will be exploited 
frequently. 
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Definition 2.1 (Scaling functions). For any j E N0, consider two different kinds 
of kernels, 

2j+1_1 

(2.5) D$?0(x) 1 D (x) x) 22j+1 S t=O 
and 

(2.6) q40 (x) 22j+1 D2?+1i1(x) + 2 sin(2 
2X) 

For n = O,... ,2i+1 - 1, define ?Q (X) := $(X - Xjn) and, in a similar way, 
q$> (X) := ? 0(x - Xj,n). Furthermore, for notational convenience, let ( = 

0j,nmod2i+1 and -1 = +,nmod2+ for any n E 2. 

These functions are well known and have been studied in detail, e.g., in [17]. 
Closed formulae for them are given in 

Lemma 2.1. For any j E No, we have 

f 1 sin 2(2i x)2r, 
(2.7) j, (x) = { 2 

for x E 27rZ, OW Ii for x E 2i7rZ, 

(2.8) fj,(x = 
22 

{ (1 - cos(2j+lx)) cot x for x ? 27rZ, 
V~j,kX)- 

~0 for x E 2i7rZ, 

and their derivatives are given by 

/2.9 (? (x)= 1 sin(2j+lx) 1 sin2(2ix)cot(2) 2, 
(2.9) q$90(x)-) 232 2+2 Ti72 fox 2r 

O for x E 2irZ 

and 

(210) 
- 2( ( 

{ Cos(22+1z)-? + sin(2j+lx) cot(x) forx ? 27rZ, (2.10) oj' f x 223+3 csin23l)1 1- 2 q$~0~) = 

~1 for x E 2i7rZ. 

Proof. The function OQ? is actually the (positive) Fejer kernel and its representation 
(2.7) is listed in [17, Vol. I, p. 88, (3.1), (3.2)]. The representation (2.8) is given in 
[17, Vol. II, p.23, (6.8)]. The expressions (2.9) and (2.10) are then obtained by just 
taking derivatives. For the cases x E 2irZ, the summation formulae (2.1) and (2.2) 
and their respective derivatives were used. D 

By evaluating the explicit formulae of Lemma 2.1, the following interpolatory 
properties can be established, taking into account that q$> (X) = q$> (x- ) for 
i = 0,1, and that consequently only the interpolatory properties of Oi>0, i.e. , for 
the case n = 0, need to be checked. 

Theorem 2.1 (Interpolatory properties of the scaling functions). The following 
interpolatory properties hold for each k, n = 0, . .. , 2 -+1 1: 

(2.11) q$9 (Xj,k) = 8k,n and q$ '(Xi,k) = 0, 
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and 

(2.12) qjl n(xJ,k) = 0 and 4j',n (xj,k) = 8k,nr- 

The values at the interlacing points Xj+1,2k+l, k = O,... ,2j+1 -1, are given by 

(2.13) (Xj+1,2k+l) = sin (Xj+2,2k+-2n) 

(2.14) q ( /I( 1 Cot(Xj+2,2k+1-2n) 
22j+2 sin2 (Xj+2,2k+1-2n)' 

while 

(2.15) = Ct(Xj+2,2k+1-2n) 
34n(Xj?1,2k?l) 22j+1 ctX+,kp~ 

and 

(2.16) q4'j n (Xj+1,2k+l) =22j+2 sn (Xj+22k+1-2n). D 

Now, the sample spaces Vj spanned by the translates OQ and O, are intro- 
duced, which will be shown to form a trigonometric multiresolution analysis of 
LT2 

Definition 2.2. For j E N0, the spaces Vj are defined by 

Vi := span{q$O9,q : n = O,... 2J+1 - 1}. 

As a first step of studying the spaces Vj, the following result identifies the trigono- 
metric polynomials which form alternative bases of these spaces. 

Theorem 2.2. For any j E N0, we have 

Vi = span{1, cos x, ... , cos(2j+l - I)x, sin x,... , sin 2j+lx}. 

Consequently, 
dim Vj = 23+2. 

Proof. By the definition of the function Q$01, it is clear that OQ and its translates by 
n7r are elements of T23+? 1 C span{1, cos x, ... , cos(2i+l-I)x, sin x,... ,sin2i+lx}. 

Also, it is apparent that 0 is an element of this span. A translation of q$> by 
n" does not cause any problem as the term sin2i+lx is not affected. Altogether, 
this means that Vi C span{1,cosx,... ,cos(2j+l - I)x,sinx,... ,sin2i+lx}. The 
equality follows from the interpolation conditions (2.11) and (2.12), which show 
that the functions spanning Vj are indeed linearly independent, and therefore we 
have dim V3 = 2j+2. D 

Moreover, Theorem 2.2 implies that 

Vj C Vj+ 1 
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i.e., the spaces Vj form a sequence of nested subspaces of L2, the space of 2 - 
periodic square-integrable functions. With the notation V 1 = {O}, it is also clear 
that 

00 00 

L2 = CloSL2 U V) and n Vj = {O} 
j=-1 ,j=-l 

A relation between OQ 0 and 00 as well as between t 0 and Ojl+, based solely 
on dilation is incompatible with the periodicity of the functions involved. Using 
properties (2.7) and (2.8) of the scaling functions, we can compute that 

00 1 sin 2__X_____ cot(x/2) 
C+1,0(x) ?o= (2x) 1sin2(x) and f+1,(x) = f0(2x) 

Note that the corrective factors 
1 sin2(x) and Cot(x/2) respectively, are indepen- 4 ~I~x7~ an4 cot(x) ly r idpn 

dent of the level j. 
Now, a Hermite-type interpolation operator can be introduced. 

Definition 2.3. For any j E N0, the interpolation operator Lj mapping any real- 
valued differentiable 2X-periodic function f into the space Vj is defined as 

2j+1 11 2j+?11 

Ljf(x) = j f(xj,n)qn (X) + L3 f'(xj,)qn$>(X)) 
n=O n=O 

The following properties of the operators Lj are therefore obvious: 

(i) Ljf E T2j+l, 

(ii) Ljf(xj,k) = f(xj,k) and (Ljf)'(xj,k) = f'(xJ,k), k E 2, 

(iii) Ljf = f for all f E Vj. 

It is possible to establish an error estimate for the Hermite interpolation opera- 
tor Lj. For this purpose, define the space W2Pas the set of all functions f E L2 for 
which the second derivative f" is LP-integrable, where the LP-norm of a 2wr-periodic 
function g is defined as 

1 27r 1/p 

liglip (= j2 Ig(x)lpdx) 1 1 < < ? o, 

with the usual supremum modification for p = oo. 

Theorem 2.3. For a function f E W2P, 1 < p < oo, the following error estimate 
for the Hermite interpolation operator Lj holds: 

|| f - Ljf llp < Cp,j 2-2j E2j (f")p, 

with E2j (f")p being the best approximation to f" from T23 in L2P. The constant 

Cp,j depends only on p for 1 < p < oo, while an additional logarithmic factor j 
appears for p = 1 and p = oo. 

The proof of Theorem 2.3 is based on approximation-theoretical results not im- 
mediately connected to the wavelet context of this paper. Therefore, the relevant 
material is not presented here, but in the appendix. 



TRIGONOMETRIC HERMITE WAVELETS 689 

Some further remarks are appropriate at this point. 

Remarks. 1. The first paper that describes nested spaces of trigonometric polyno- 
mials from a wavelet point of view is by C. K. Chui and H. N. Mhaskar [4]. The 
spaces Vj in Definition 2.2 are in fact the very same ones (up to a shift of the indices 
by one) as those investigated in the Chui and Mhaskar paper, where only one scal- 
ing function is used to span Vi as well as only one wavelet (instead of two, as shall 
be seen in the next section) to span the orthogonal complements. Furthermore, 
the scaling function in [4] gives rise to only a quasi-interpolation operator, and the 
corresponding wavelet also has no obvious interpolatory properties. This makes 
the construction of the relevant decomposition and reconstruction sequences more 
complicated. The Hermite interpolation operator in Definition 2.3 allows a simpler 
approach to the construction of the reconstruction and decomposition matrices (see 
?? 4 and 6). 
2. A Lagrange interpolation approach to trigonometric wavelets based on results by 
A. A. Privalov [14] was investigated by J. Prestin and E. Quak in [11, 12, 13]. The 
nested spaces generated by this method are different from the sample spaces Vj of 
Definition 2.2. For the so-called de la Vallee Poussin interpolants, the trigonometric 
polynomials contained in the corresponding nested spaces satisfy a more intricate 
relation. For Fourier-type interpolants, however, the highest-degree polynomial is 
in fact a cosine term. For more details, see Theorem 7.1 in [11]. 

3. INTERPOLATORY HERMITE-TYPE WAVELETS 

As the next step, the orthogonal complement Wj of Vj relative to Vj+?, i.e., the 
so-called wavelet space, needs to be described in more detail. 

Definition 3.1 (wavelet functions). For j E N0, define 

2j +2_1 

(3a1) n0 = 2Jx l cos2j+lx?+ 
I 

E (312j+1 )cosfx 
1=23+1 +1 

and 
23+2 _ 1 

(3.2) 1, o(x) = 3 2zi+1 Z sin x + 2 +3 sin 2j+2x. 
t=23+1 +1 

As for the scaling functions, for any j E N0 and n = O,... , 2j+l- 1, set lp>n(x) = 

0 ?o (X - X,n) and bJ,n 7(x) = 0J,o O(X-Xj-n) with the same use of indices modulo 

2j+1 as in Definition 2.1. 

Definition 3.2. For j E N0, the spaces Wj are defined by 

W:=san{j?;,09 n : n = 0,... I2j+1 - 1}. 

Using Theorem 2.2, a careful inspection shows that 09?;O "o E Vj+i, and a 
translation by ' does not influence the terms cos 2J+lx and sin 2j+2x, so that also 
for any n = O,..., 2j+l -1, it follows that 

?,o 421 E Vj+i. 
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From the usual orthogonality properties of trigonometric polynomials, it is clear 
that 

10'-;n'Oil, n 1 Vi 

where orthogonality (denoted by I) is considered with respect to the usual inner 
product as introduced in ?2. Since the cardinality of the spanning set for Wj (i.e., 
2i+2) is the same as the dimension of the relative orthogonal complement 

span{cos 2i+1x, ... , cos(2i+2 - I)x, sin(2j+l + I)x, ... , sin 2?+2X} 

of the space Vj in Vj+?, it remains to verify the linear independence of the functions 
that span Wj. This will again be accomplished by using the interpolation properties. 

In [11], following Privalov [14], we used a simple construction formula for the 
wavelet functions in terms of just one scaling function of the level j + 1 and one of 
level j. In this Hermite case, the formulae are much more complicated. 

Lemma 3.1. For j E N0, the wavelets O and O, have the following represen- 
tation in terms of the scaling functions of level j + 1 and j: 

0.1;0 3?Oj+1,0 - 3?Oj,0 

23?+1 _1 2j+1_1 

(3.3) ? - 3. 
C2tijS2,2n?1,2n?10 +3 E O(j22 +1)>+,2n+l -3 .2i E ?j+1,2n+l 

n=0 n=0 

and 

4 1 1 
~~~23?1_1 

(3.4) 
1 
jo 1q~+, 2'o+51ji2? (3 4) 4>0~I = -o?4+1,0 - 03?)O + 32 E j+1,2n+l1 

n2=0 

Proof. Let us start with the expression in (3.4). Using the definitions (2.6) and 
(3.2), one finds directly 

14o(x) = (x) - (x) 3 22j3 (sin 2j+2X -2 sin 2i+1x). 

As the Hermite operator Lj+1 defined in Definition 2.3 is a projection on Vj+l, one 
obtains by direct computation 

3. (sin 2 -+2x-2 sin 2 -+lx) =j 2 3L ((sin 2i+2 -2 sin 2i+1 ))(x) 

23+1_1 

3 . 2i E Xj+1,2n+l1(x 

For (3.3), definitions (2.5) and (3.1) yield 

09 4 010 
i)0(X)= Oj+,,0(X) - 0 (x) 

( 23+2_1 23+1_1 1 

+32j Y E Cosex- S cosbxj +?3 4 (cos2j?x-1). 
3 .2i 

t=23+1+1 
3 

t2=11 
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As above, an application of the operator Lj+j and some straightforward computa- 
tion yields 

3I2J+l (cos 2j+lx -1) = Lj+i(cos2i+l -1)(x) 

2j+'l_ 

= 3 2j E Oj+1,2n+1 (X). 3 2i S= n=0 

The remaining term can be dealt with in a similar way, but it is necessary to com- 

pute the values of the sums EZ-2j+ 1 cos ?x and Ee-= cos ?x and of their deriva- 
2j+2_1 E2j+l1 tives EZ=2j+1+ -isinix and Ee- -_sinix at the knots Xj,n and Xj+1,2n+?l 

respectively. This can be performed by taking into account the explicit formula 
(2.1) for the Dirichlet kernel and its derivative, and yields, after some computa- 
tions for n = 1,... ,2j+1- 1, the following results, which are recorded for later 
use: 

23+1 - 1 2j1+2_1 

(3.5) Z cos(#xJ,n) = E cos(xj,n) = -1, 
t=1 t~~~=23+1 +1 

23+1-1 23+2_1 

(3.6) 5 COS(Xj+1,2n+l) = E COS(fXj+1,2n+1) = 0, 

b=2V+l+1 

2j+'l_ 2j+2_ 1 

(3.7) S - sin(Xj,n ) = E -f sin(Xj,n) = cott(xj+l,n), 
t=1 t~~~=2+1 +1 

while 

23+1 - 1 

(3.8) E -fsin(fxj+j,2n+1) -2jcot(xj+2,2n+l) 

and 
2 2+2_ 1 

(3.9) E -f sin(Xj+1i,2n+l) = 3 2j cot(xj+2,2n+l). 
t=2i+1+1 

These results imply the final equality 

1 23+2_1 2j+-l_ 4 2j+1-l 

cos x- cosx = Ot(Xj+2,2n+1)1 () 3 *23 
t=2j+l +1 J-i n=O 

which concludes the proof of this lemma. D 

Lemma 3.1 now enables us to state the interpolatory properties of the wavelets. 
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Theorem 3.1 (Interpolatory properties of the wavelets). The following interpola- 
tory properties hold for k, n = O, ... , 2+1 - 1, namely 

(3.10) 80n(Xj,k) = 6k,n and ( 0 

as well as 

(3.11) ?il n(XJ,k) = 0 and f/1n4 (X3,k) = 8k,n- 

The values at the interlacing points X3+1,2k+l for k = O, ... , 2j+1 - 1 are given by 

(3.12) 4j,n(X3+1,2k+1) 3 2 - 3 . 2 sin 2(XJ+2,2k+1-2n), 

(3.13) O),n'(Xj+1,2k+1) 3 Ct(+2,2k+-2n) + cot( 2,2k12) 37 3 3 ~ C3(X?,2?1 - 22i?2 si2 (X~~2?12i 

while 

(3.14) A~ n(x3+1,2k+1) = -3 2>3+1 COt(X3+2,2k+1-2n), 

(3.15) i,n (3+1,2k+l) = ~323 + 3 223?2sin (xj+2,2k+1-2n)- 

Proof. All these properties can be established by using the representations for the 
wavelets given in Lemma 3.1 and the interpolatory properties of the scaling func- 
tions of Theorem 2.1. D 

As a first application, (3.10) and (3.11) imply the linear independence of all 
wavelet functions /9 and sb1, and thus we have 

Corollary 3.1. The space Wj is the orthogonal complement of Vj in Vj+1, i.e., 

V3 + =Vj e Wj, 

where e denotes orthogonal summation. E 

Remark. In [11], trigonometric Lagrange interpolants were investigated, where the 
corresponding wavelet functions interpolated the fundamental data set {&k,n} at 
the midpoints of the underlying partition. In fact, it can be shown that it is 
impossible to construct a wavelet function that is also a fundamental Lagrange 
interpolant on the original partition. The situation here, for Hermite interpolants, 
is strikingly different. Theorem 3.1 shows that the pair of functions in Definition 3.1 
indeed interpolate the fundamental data of function and first derivative values at 
the points of the given original partition. 

Thus, the scaling function 0.1? is a low-frequency fundamental interpolant of 
function data, while 000 is a high-frequency fundamental interpolant at the same 
points (and analogously for the first derivative for O and 01bO). Figures 1 and 2 
show the functions 0, 16,0' 16 and '40,16 and 4116, respectively. 

Note also that while the scaling function O)? is even and the scaling function 

01 is odd, this is also true for the corresponding wavelets, namely 0L% is even and 

, is odd. 
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4. TWO-SCALE RELATIONS 

The availability of the Hermite interpolation operator facilitates the comput 
tion of the finite two-scale sequences considerably as compared to the corresponding 
treatment of the two-scale sequences of the spaces Vj in [4]. In the Lagrange case 
(see [11]), a reconstruction matrix consisting of four circulant blocks was computed. 
Here, since we have two scaling functions and two wavelets, there will be sixteen 
such circulant blocks. Its particular entries are already known by applying Theo- 
rems 2.1 and 3.1. 
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As Vj C Vj+i, there have to exist specific coefficients Pj'i,s and O'n such that 

= Es?U,?n,sOj+1,s + Pj?'n,sOi+1 s) as well as coefficients Pjis and Pi, s such 
that =n Pj,n 3+1s + Pj?'n s43b+1). The following result establishes their 
precise values. 

Theorem 4.1. For j E No and n = 0, 1 ... ,2j+1 - 1, we have 

2j+'l_ 2j+1_l 

3,n = 2j+1,2n +? E O?n(Xj+1,2s+1? + l+ n (Xj+1,2s+1)0>+l,2s+l 
s=0 s=0 

2j+?1l 1 

= )+1,2n ? 22j+2 sin (Xj+2,2s+1-2n)Oj+l,2S+l 
s=0 

2j+?lz 1 Cot(Xj+2,2s+1-2n) 

5= _2i+2 sin2 (Xj+2,2s+12n)j+3,2s+1 

and 
2j+?1' 23+1 1 

jn = Oj+1,2n + ) Ob,n(Xj+1,2s+l)k+1,2s+l + + q41,n(Xj+1,2s+1)0q+1,2s+l 
s=0 s=0 

2j+'l _ 

= .j+1,2n + S 2i+l Cot(Xj+2,2s+1-2n)+1,2s+1 
s=O 

2j+1l 1 
+ E -22j+2sin- 2(Xj+2,2s+1-2n)Oj1,s+ ? I? 22j+2~' 3+,sl 

s=0 

Proof. Using once again the fact that the interpolatory operator Lj+1 in Defini- 
tion 2.3 is a projection for Vj+i, we find that 

23+2_1 

n(X) = Lj+1(09,n)(X) = 09n(Xj+1,k)0+1,k(X) + 09? n (Xj+1,k)O>+1,k(X) 
k=O 

and 
2j +2_1 

q>n(X) = 5 4, n(Xj+1,k)q5+lk(X) + 4j,n (Xj+l,k)51+l,k(X). 
k=O 

The interpolatory properties of Theorem 2.1 now imply the desired results. O 

Analogously, from Wj C Vj+i, it is clear that there have to be coefficients qj,n,s 
and q91? such that -?; 

? 
( + s+) as well as coefficients 

1,0 =11 
1 1 0 0 1 11\ 

qj' and ql'l such that O = E(qj"'sOj+1,s + qj" ? - These coefficients 
are determined in the following theorem. 
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Theorem 4.2. For j E N0 and n = 0, 1... , 2j+ - 1, we have 

2j+1_1 2j+1_1 

Jn= j?+12n+ E )29n(Xjs+1) j+1,2s+ 1 
s=O s=O 

= ~j+,2m ?23+1- 122 = ?>0 + E (-- 3. + 
sirn 2(Xj+22s+1-2n)) 0 +1,2s+1 

2+1 1 c1ottXxJ22,2si+)1-2n,2s+ ? S (c3 COt (Xj+2,2s+1s2n) +. j+2 s2( + )+j+1),2s+ 

and 
23+1 1 2j+l1' 

7p j,n =~ 
4+1,2n + Y, O1,n(Xj+1,2s+1)0)+ ,2+ + )j n( j l2+)+1 2 s+1 

3 3j12 ? j+,2+ ? 5 ,n h(Xj+1,2s+l1>I4+1,2s+l 
s=0 s=O 

23 + 1 1 

= j+1,2n - 2 t(Xj+22s+1-2n)+1,2s+l 

+ 
1 

3 
+-2(Xj+2+2s+1-2n)1 

32321 22~j+2sin3(1+2,2s+lh) 

Proof. As in Theorem 4.1 above, the projection property of Lj+1 and the interpo- 
latory properties of the functions )? and Oj from Theorem 3.1 are the necessary 
ingredients for the proof. O 

Let 4DQ denote the vector (Oq?0, OQ,1 1 0, 23?+1 1)TI and let us also introduce 

j = (q0, 1 ...... * b* * " ? T = ( ?;1,... ,b?2j+11)T, and finally Tj = 

3+, y1 ,3 , j, 2i+l )T 

Furthermore, we define a reordering for the vector of scaling functions (either 
for 0 or 1) by 

Pj(bj+l = (%j+1,0o, Oj+1,2, * * j+1,2m, * j+1,23+2-2, 

Oj+1,1, Oj+1,3, **kj+1,2m+1, * , Oj+1,2j+2-_)T, 

i.e., Pj is chosen to be the suitable permutation matrix for this ordering. Then 
Theorems 4.1 and 4.2 can be expressed as 

3 ?1 (pi4?o\ 

Here, the two-scale relation or reconstruction matrix Cj has the following form: 

Ij ~~2-2j-2S. O -2-2j-2U 
0 2~~-2j-1T 3j --2j-2 

Ui 0 2 Ti Ii~ -2 SiU 
Ci = 

2j-2S 
Ii 

22j-2S Ij -12iE?jE 22 2S) 0 2(4Tj +222 Uj) 
O 1 2-2j-1T Ij - (2-jEj + 2-2j-2Sj ) 
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where for each block the subscript j indicates a submatrix of dimension 2j+1. In 
fact, all these submatrices are circulant (see the monograph of Davis [6] for a com- 
prehensive treatment of circulant matrices) and, consequently, in implementations 
it is possible to use efficient techniques such as Fast Fourier Transforms. According 
to Theorems 4.1 and 4.2, Ij is the identity matrix, Si = (sin-2(Xj+2,2s+1-2n))n,s, 

Tj = (cot(x1+2,2s+i-2n))n,s 
C Uj = ( X+22s+l , and Ej = (I)n,s the matrix 

with constant entries one. Thus, Cj is a square matrix of dimension 2j+3 with 16 
circulant blocks. 

As a consequence of Corollary 3.1, both the sets {q 0$ , r ) ? r ) 2 12r-O -1 and 

{?*jo+ r) j+ir}r-OV -1 are bases of Vj+i. Therefore, as it represents a change of 
basis, the reconstruction matrix Cj is nonsingular and its inverse Dj is the decom- 
position matrix such that 

J P +1 D ( 

Pi+1 

In order to obtain a detailed description of the entries of Di, it becomes necessary 
to investigate inner products of scaling functions and to introduce dual scaling 
functions. 

5. INNER PRODUCTS OF SCALING FUNCTIONS AND DUAL FUNCTIONS 

In this section, dual scaling functions, and thus the inner products of the func- 
tions ?Q k and q4k, are studied in more detail to eventually facilitate the computa- 
tion of the decomposition matrix Dj in ?6. 

Definition 5.1. For any j C N0, the functions and c-r E Vj, for r = 

O,... , -2+1 1, uniquely determined by the conditions 

(?>? ?, jk) = 6r,k, r, = 

and 

(X1,r, 0? k) = 0, (?,r, ?Oj,k) =r,k, 

respectively, for all r, k = O, . . . , 2+1- 1, are called dual scaling functions (or duals 
of the functions cQ/ 4r ). 

Note that the dual scaling functions lie in the same space Vj as the original scaling 
functions. Consequently, the dual functions can be written as linear combinations 
of these scaling functions. It is a well-known fact that the coefficients in these linear 
combinations are nothing but the entries of the inverse matrix of the inner product 
matrix of the scaling functions. Specifically, for any j C N0, we have 

-o 2-7+1 - 1 
0,0 0 0 1 i 

q5j,r E S (C;r s ?j s + aj r s oil, s 
s=O 

and 
2,7+1 _1 

ol = E a(<j "r( s1Oj, s + aj r sqj s) , 

s=0 
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where the duality conditions lead to a linear system of equations for each dual 
function rr= 0,... ,2i+1 -1, i =0, 1, namely, 

2j+1 -1 

S (XJ'r sj s) + c3((j,k, /4s) = 8r,k *i,iv k = o,... I 
- 1, i = 0,1. 

s=O 

Its coefficient matrix is always the inner product matrix 

1,0 

where 
00 = 3+- 2j?1 1 

Go' (K Go" k,s))2>1 Cj,= (K/,k'/4s)) k,s=O 

0 2i+ 
C1 ' 1 

23?1 1, GSo ( ?1,k Ks?) ) k,s 
G;' 

k( (*,k vs ))k, s=O 

and different right-hand sides correspond to different dual functions. Note that, of 

course, G" = GO,1T 

Therefore, the next step must be a closer investigation of the inner products of 
the scaling functions. This is done in the following lemma, which also implies that 
the scaling functions are not mutually orthogonal. 

Lemma 5.1. The inner products of the scaling functions on level j C N0 are 

(5.~~~~~~~~~~ 1 )(j , j,){si-(X+ l , k-5)7k s, (5.1) 0k 
0 

= ( 
3 

29i+3)k= 

(5.2) =Et)g;k) (> ) { 23 COt(XJ+)2j+Sln k =s, 

(5.3) = {, k3=? 3 k = 
k24?5, k s. 

Proof First, observe that after an appropriate substitution, it suffices to consider 
inner products of the form (4j,o, cki,s). Secondly, it is possible to use the representa- 
tion formulae in (2.3) for the Dirichlet kernel and (2.4) for the conjugate Dirichlet 
kernel to facilitate the evaluation of the inner products. 

The simplest case is (5.3), where (2.4) can be used to establish 

-4 1'() ) 4 (D23?i+-1(.) + 2!sin 2i+1(.), D2j?ii-(. -Xs + 2sin 2J+1(.)) 

- 24j+2 ((2+ l() D23?ii -l 
( 

xj,)) + 4 (l2sin 2J+1 ( ),l in2j+1 ())) 

- 24i+2 (-2 -1 (D +2 2 +5 

- 24i+2 (1 2 E ? os(1, + k s 
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Here, the summation formula (3.5) for s =A 0 and a direct computation for s = 0 
are used. 

In order to prove (5.2), we consider 

2j+1 -1 

= 24i+2 ( S Di (), D2ji+ -1 (xj,) + - sin 2j+ ()) 
i=o 

2j+1_1 23?+1_1 

- 24j+2 S (De(-), D2?i2+1Q -1 x,s))= 24j+2 
_ - S23,i-j(Dj)(xj,s) 

0= i= 2 -i j, 

2j+?11 1 2j+1_1 

=-2i+ S S sin(rxj,5) =-24i+3 5 (2i1 -?) sin(#xj,s) 
e=1 r=1 

23?+1 1 

- ~~ S ?sin(&j's~) =24j+3 snx,) 
=1 

by using (2.12), so that for s 7& 0, (3.7) yields (5.2). 
Finally, by using (2.1), the Fejer kernel (2.5) can be rewritten as 

23?+1_1 2?+1_1 

22j+1 S De(x) = 2i+1 + 22j+1 5 
(2+ 1 - )cos x. 

i=o i=1 

Thus, we have 

2j+ 1 1 2j+11 

Wjo I ?s= (2i?1 + 22j+1 (2+1 -.)cos, 22+ Dr(-Xj,s)) 
r=O 

21 ?1-1 

23j+2 S (1,Dr(-Xj,s)) 
r=O 

1 23?+11 2?+1-1 

+ 24j+2 5 (2+-1 5 (cosb-,Dr(.-xj,s)) 
i=1 r=O 

2-7+1_1 2-7+1_1 

= 1 1 (2j+2?1 21) Sr(cost )(xj,s) 22j+2 +24j+3 5 (21-)5 
i=1 r=O 

23?+1 1 

2++ 1 5 (2_1 - )2 CoS(&xjs) 

i=1 

2j+1 -1 

= 22j+2 1 24+3 
i=1 

For s = 0, a direct computation gives (5.1), so that it remains to establish that, for 
s 7 0, 

2(?+11 n 

(5.4) S 2 COS(~Xj,s) = 2i Sin-2(Xj+,,5) -22j+1. 
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This is accomplished by starting from the formula (2.1), namely 

2sin2 D2j+l -l(x) = sin(2i+l - )x. 2 2 

Taking the second derivative yields 

2sin- D"23+1 - _(x) + 2cos- D'2 +1 (x)- sin D23+ l (x) 
(5.5) 2 2 2 2 

=_(23 12 sin(2j+l -)x. 2 2 

The formulae (3.5) and (3.7) give the values of D23+1-1(xj,?) and D'23?+1 (x-I,) 
so that the result of an evaluation of (5.5) at the knots xj,5 can be rewritten to 
produce 

D"2i+l _ (xj,,) =-2i Cot2(Xj+,s) - 2i + 22ij+1 

which implies (5.4). a 

The interpolatory properties of the functions oo?k and Ok allow us to establish 

some results on the matrices GC'?, GC" C1'? and Gl l which turn out to be useful 
when it comes to the computation of the inverse of Gj. 

Lemma 5.2. For j C No, the row sums of the matrices G'? GCo'1 = 
,T 

and 

Gl are 

2j+1 _l 

(5.6) E (GC'?)O k 2i+1' 
f=o 

2j+1 _ 

(5.7) S (GC')k= O, 
e=o 

23+1_1 1 

(5.8) S (Gl4") ke 23j+4 
t=O 

for arbitrary k = O,.. ., 2i+1 -1. By using the matrix Ej = (1)2`7+> 1 with constant 
entries 1, we can express this as 

G??Ej =i1 'Ej G3'E- = O and GC'Ej Ej. 

Proof. As all matrices are circulant, only the first rows have to be investigated. 
Using the fact that the constant function 1 is interpolated exactly at each level j, 
we obtain 

23+1-1 

E g?,# = 1 
t=O 

and thus 

2J+1-1 1 12f 27 23?+1-1 d 

5 (Ci?'?)oe = (Ofi3) 
5 , 22j+1 210 , E, - 2i+1 

e=O e=O = 
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To prove (5.7), we make use of the following fact: 

21+1 _ 1 

2 sin 2 _+ 2j+1 Lj (sin 2i+1.)(x) = Z 

t=O 

Therefore, we have 

23+1-1 2j+?l1 2j+1_l 

S (G' 1) (q90, IE = + ( 2 J De(.),sin2j+1(.)) 0. 
t=O i=o i=o 

Finally, (5.8) is merely a consequence of some direct computation. O 

By using the values of the matrix entries in (5.1) and (5.2), we have the following 

Corollary 5.1. For j C No, the formulae (5.6) and (5.7) can be written as 

2j+'l _1 

(5.9) 5 sin-2(xj+i,e) = 
_ 

(22j+2- 1) 
t=1 

and 
2j+'l_ 

(5.10) E cot(xj+l,e) = 0. 
e=1 

Consequently, it follows that 

2j+1 - 1 

(5.11) 3E sin (xj+2,2e+1) = 22j+2 

f=1 

and 
23+1 _1 

(5.12) 5 Cot(Xj+2,2+) = 0 

The final step before the computation of G1- is to find a way to rewrite Go1" /G?OJ 3 3 IT 

Lemma 5.3. For any j E N0, we have 
~~ ~~ ~ ~~ 1 1 Go"- Go"1 - 1 --I + Ej - G___ 

Proof. First, the diagonal elements (Go"1 Go"1)kk for any k = 0, i... 2+1 -1 

according to the representation (5.2) of the elements of Gj?" are 

2j+1 _l 

26j+6 E Cot(Xj+1,k-e) Cot(Xj+l,i-k) 
=0,e+k 

2j+1 l 

- 26i+6 ?E (sin 2(xj+l,k) - 1) 
i=O,i:Ak 

25i+5 - 1 1 ~~~2j+1- -l = 1 _ 1 - 1(1 sin-2(XjiN f 

4j+4 + 25 ~j+ 5 23i+(3 + 3 1 (by (5.9)). 2__ _ _-23j+2 \3 .2J 3. -23j+3 



702 EWALD QUAK 

For the off-diagonal elements, i.e., k 7- s, it follows that 

0,1 1 2j+1 _1 

(GO Go s = 26i+6 S Cot(Xj+l1k-e) cot(xj+l'-s). 

i=O,b7Ak,i=As 

The formula 

(5.13) cot a cot 3 = cot(ae + 3)[cot a + cot3] + 1 

(for appropriate values of oa and f) yields 

(Gj. Gj)k,s 

2j+?1 1 

26i+6 E {cot(xj+l,k-s) [Cot(Xj+l,k-i) + cot(xj+l,i-s)] + 1} 2 
=O,bAk,ebAs 

= 26i+6 cot(Xj+l,k-s)[-2cot(Xj+l,k-s)] + 25i+5 - 26i+5' 

where (5.10) has been used twice for the sums of cotangents. O 

Now, the inverse of the inner product matrix Gj can be described in some detail. 

Theorem 5.1. The inverse of the inner product matrix Gj -of the scaling functions, 
and therefore the coefficient matrix of the dual scaling functions, is given by 

(0)0 0 1 

= i 

where 

ioXo = 2i - Ij 1 = E24.+4Gol 

0= -24j+4 = 24j+4G9l and cJ'l = 24j+4GO + 22 Ej 3 ~i J J 

Here, as above,- Ij is an identity matrix, Ej a matrix with constant entries 1, 
and the matrices G09, GC?' and G ? are the inner product matrices introduced in 
Lemma 5.1. All of these matrices are circulant square matrices of dimension 2j+1. 

Proof. The proof is obtained by a direct computation and an investigation of the 
four matrix equations stemming from 

-yo, 0 0 
1- (I0 0'\ zG? G01 ta0 a01 tI 08 

G' Gl 1,0 1 1 K 0 jJ 

First, by using the definitions for the ae-terms, the matrix version of (5.6), and 
Lemma 5.3, we have 

G9'ca'0 + GC?alo9' = 2j+2 G0,? - G0'0E. + 24j+4Go0 Go1 =I 
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Secondly, by applying the matrix version of (5.7) and taking into account that 
circulant matrices commute [6, p.68], we have 

G? ? a,1+ G?'lal' = 424i+4Go' . Go"' + 24j+4Go'" G?'0 + 22j+2G 'Ej = O. 

For the other two steps, the simple structure of Gl1 1 - 43 Ej is used. 
In the third equation, this along with the definitions of the ae-terms, yields 

G1o o,o + G,lalO = 22Gjo - Gl'0Ej - 2i 2Gl'0 + EjGj1o = 0, 

where (5.7) and the fact that the column sums of circulant matrices are identical 
to the row sums, i.e., EjG}20 = 0, are also used. 

Finally, using that Gj'0 =--GCol, Lemma 5.3, (5.6) for column sums and E= 

2j+1E;, we have 

G,oao,l + GC'Ia ,1 

=-2 G? GGo"l + 2i 2G9'? + 1 -3EjGo'o E?= 
_ ___r_ i i 2J 2 3 22j+3 3 D 

Again, some remarks seem to be in order. 

Remarks. 1. The circulant structure of the ae-matrices in Theorem 5.1 can be used 
to show (much like the Lagrange case in [12]) that the dual functions are also 
translates by multiples of 2- of the functions ? and qj$o just as is the case for 
the original scaling functions. 
2. The wavelets in the Hermite multiresolution analysis are not mutually orthogonal 
on a given level j, but of course there is orthogonality between scales, i.e., by Chui 
[3, p.15] the wavelets are semiorthogonal. 

Along the same lines as presented in ?5 for scaling functions, it is also possible 
to define dual wavelet functions as an alternative basis of the wavelet spaces Wi. 
In order to do so, the inner products of the wavelet functions need to be com- 
puted, again leading to a matrix Hj with four circulant blocks. Analogously, the 
coefficients of the dual wavelets would then be the entries of the inverse matrix of 

Hj. 
As the dual wavelets are not necessary for the purpose of finding the decom- 

position matrices (see the following section), the relevant computations are not 
described in this paper. 

At the end of this section, we will consider inner products of scaling functions on 
consecutive levels, which form another building block for the subsequent detailed 
computation of the entries of the decomposition matrix. 

Lemma 5.4. The inner products of scaling functions on levels j c No and j + 1 
for k = 0, ..., 2i+1- and s = 0,... 2i+2-1 are given by 

f 
- 
?3( + ), 2k = s, 

(5.14) (?k, vj+ls) = sin1 (Xj+2,s-2k), 2k 4 s, s even, 

' 1 2 sin- 2(xj+2,S-2k), s odd, 
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(5-15) W,ki '+I, 
f 0, 2k = s 

(5.15) = j2 3{ cot(xj+2,S-2k), 2k sy 
f 0, 2k =s, 

(5.16) 1 +1,s) = C cot(Xj+2,s-2k), 2k + s, s even, 

21 j5 Cot(Xj+2,s-2k), s odd, 
r 1 1 k s 

(5.17) ({k j+1s- 2k 
-24j+6 2k s. 

Proof. Similar to Lemma 5.1, and because of (%j,k, Oj+l,s) = %'j, Oj+1,s-2k), all 
statements will be proved for the case k = 0. Also, as in Lemma 5.1, the computa- 
tions will rely on the representations (2.3) and (2.4). 

First, we have 

2j+1_l 2?+2_1 

(qi,o q$?+, ) = 24J+4 (2i + E (2j+1 - ?) cos-, Dr(-xj+l,s)) 

r=O 

23?+11 23+2_1 

22j+3 24i+4 E (2 
1 

) S 2Sr(cos?.)(xj?i,s) 

1 1~~i1 = 

22j + 24 5 (2j+1 - )(2j+2 - ?) cos(?x+i,s) 

I 3+ 23?11 -? 23?-11 - 
2j+ _ 

2 1 
coj+1+,s _) CO X j , s 

22j+3 5 23j+4 1 (2x+_,s) 24j+5 (2j+1 )2 cos(?Xj+i,s) 

2j+1_l 2j+1_l 

= 12j+3 + 13 s (-1)s 
2 1 

COS(?Xj+i,s) + 24 I5 (1)s 12 COS(1j+1 S). 
22j+3 23+ 24j? cs(x+5,) 

The case s = 0 follows by a straightforward computation. To evaluate the cosine 
sums, note that 

2j+1 _1 

5 cos(&xj+i,s) = 22+ o (xj+x.s) - 23 (_l)S 

J-2 sin-2 (xj+l,s) + 2i, s odd, 

l-23, s even, s #0. 

Furthermore, we have 

2j+5 c( 

E 42 COS(&j+lXs) = -D11 +1 -1 (xi+l,s) 
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and evaluation of formula (5.5) at the knots xj+i,, gives 

DI +1_-1 (xj+l,s) = (-1)s (22i+1 - 2i sin-2 (Xj+2,s)) 

Combining these results yields (5.14). 
Secondly, we have 

1 2?11 1 j 
j+l,s )= ( De(.), D2D?Qj+1 - 1(-xj+,s) + - sin2 (.)) (q$ I,o, +,s 24j+4 2 

i=o 

2j+11 2j+1_1 

=-24i+5 E S2?j+2l(De)(xj+l,s) =-24i+5 E (2j+1-1 ) sin(#xj+i,s) 
i=o i=o 

=-24 +5 (-1)sD23?l -1(Xj+i,s). 

From here, the case s = 0 is immediate, while taking the first derivative of the 
closed formula for the Dirichlet kernel and evaluating it at xj+i,s takes care of the 
rest of (5.15). 

Thirdly, we have 

2-3+2 _1 

? 5= 24i4 (D22j+11() ? 2sin23+ (.), De( - xj+,s)) 
3 'S 24j1 (2 si2 )(x+,~ 

2j+'-l 2i +2_1' 

= 24;+5 | ? :? ) Se(b2:+1?1(.) 
+ ? sin j+1(-))(xj+l,s) 

i=1 i=2j+l 

= ~~ ~ (2++_ 

=24j+5 (2j+1 _ )sin(#xj+i,s) + 2j+lb2j+1 -1(Xj+l,s)J 

= 24i+l-5 ((-1)s ( ?1 sin(exj+is)?+23i+20O(Xj+iS))- 

Thus, from (3.8) and the interpolatory properties (2.12) and (2.15), one obtains 
(5.16). 

Finally, we have 

3)01 1j+l,S) 

= (D2j+1_(1) + ! sin23+1(.), D2j+2i( - xj+J,S) + - sin 2iJ )) 
24j+4 2 2 

~~-4;+S23+21 (-D2.+l_l() + sin 2+1()) (xj+?,s) 

= 24+5 (D2j+l?l(x?+ls)-2 + 2(-1)s) 

Evaluation of formula (2.1) now settles (5.17). D 
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6. DECOMPOSITION SEQUENCES 

Since Vj+j = Vj 33 Wj for j C N0, any ?0+1n and c+ n Vj+i can be written 
as a linear combination of the basis functions of Vj and Wj, i.e., ?q35k, j,k' 4'j,k 
and 3,k' The computation of the relevant coefficients will not be performed by 
inverting the reconstruction matrix, but instead, by using the dual functions and 
the interpolatory properties of the scaling functions and the wavelets. 

Theorem 6.1. For any j E N0 and m = O,... , 2+ - 1, we have 

2,2+1 _1 

0 0 0 0 ~~~0,1 1 b90 0 0 / 1? 
Oj+1,2m = Z (ai;m,5 q$j + a'm s? s + j,'m,s? s + b 3 lm 

s=O 

where for s = O,... 2i+1 - 1 the decomposition coefficients are given by 

ao0o 3 
- 1 

j, m, s - 
m's 2i+3' 

0a1 = 
, m=s, aj,M,s l -1 cot(xj+i,m-s), m 7As, 

00' 16 
1 

bjm,s 4 ,s + 3 

bo0 1 -0 m = s, 
i,m,s l1 

cot(xj+l,m-s), m: S. 

Proof. The general approach for the proof of this theorem and the ones that follow 
will always be the same. The coefficients for the scaling functions are determined 
by taking inner products with the corresponding dual functions, then by using 
the formulae for the dual coefficients and the inner products of Lemma 5.4. The 
wavelet coefficients can then be derived simply by using the interpolatory properties 
of scaling functions and wavelets from Theorems 2.1 and 3.1. 

Starting from the representation 
2j+1 1 

?jm+1,2m - S (a?,'%k0,k + ajm k,k ? b?'%k+,k +i'k ) 
k=O 

we take inner products with the dual function E$Q E Vj I Wj, which results - 
according to Definition 5.1 - in 

23+1 _1 

0,0 =, 0 = E (0?X? 0 00\ 0,1s,4 ,AO\'\ 
is ao'js 0+12m \1~,,\je Y+1,2m/ +acEl5'vI 1~, j+12/ 

- 5 (226 s,- 1)(;=, ?>j?+1,2m)- 23+1 E 5 t(xj+i,s )(q$;,#, ?j+1,2m) 

e-o e=o,e?As 

= 2j+2 ( j?1l2m-2s) - (1, 1j+1,2m) 
2i 26,?+ _ 1)(0 0 

- 2j+1 5 cot(i+?,52e)(q-2,o, ti+1,2m-1e) 

= 23+2(?>;0,59j+1,2m-2s)- ct2 2+4 Ecot(xj,5)?(j+m-)X 
2i?2 -22i+4 S, 

0, oi ) - 
41 +1,2m #s,e# 
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by using the results of Theorem 5.1 and Lemma 5.4 in the process. For the case 
m = s, this yields 

5 1 1 12+- 
5 + 

2 - 2?- 4 
E (sin-2(X ,e) - 1) 

and thus by (5.9) the desired term. For m 7& s, one obtains 

1 1 1 2j?1-l 

2_i+3 sin 2(xj+i,m-s) -2i+2 + 22i+4 cot(xj+i,es) cot(xj+i,me), 
Tj0,e32s,e2jm 

and then one handles the cotangent sum as in the proof of Lemma 5.3. 
To compute aj?' sI the inner product is taken with ? s, producing 

ajX ,MIs ((),svQ 1,2m ) 

2j+'-l1 

= 2j+1 5 cot(Xj+l,s-) (23i+5 sin (Xji,m_e)(1 &,m) 

i=O,i:AS 

11 5Q 
3 23i+5 2i+3 

23 2+1 _1 

+ 22j+4 E sin 2(xj+i,s_) cot(xj+l,m-e) 
i=0,e:#s, 7 m 

2j+1 _ 
1 2j+12~? -1 

+ 2i31 1 + y3j+3 ) cot(xij+,m-s)(1 -s,m) + 22?2K E f5 Oj, +1,2m) 

3 + 23 1 ___ 8s,m 

= 2i+ cot(xj+l,s-m)(235 + 2j+3)(1 -s) 

+ 2i 
1 1 + 23j+3)cot(xj+?,ms)(1 - &s,m) + 2j+ (sin 2i+ ? 1 

For the wavelet coefficients, evaluation of the decomposition equation at the 
knots xj,8 and the use of the interpolatory properties from Theorems 2.1 and 3.1 

give the equation 6s,m = a0's +1 bib'm ,while taking the derivative followed by j M'S j,m,s' 

evaluation at the knots xj,s results in 0 = a? ] , + b0? ' 

Theorem 6.2. For any j E No and m = 0, ..., 2i+ - 1, we have 

2j+1 -1 

Xj+1,2m+1 S < (&j,'%,s~j,s + s,j, s + bj? ?'4s + b?, soj'V) 
s=O 

where for s = 0, 2l, - 1 the decomposition coefficients are given by 

-0,0 1 1 2 2 

am,5 o 23+3+ 2 Si?n (Xj12,2m j1-2s), 
O 

= 
l 

cot(x?2,2m?2s) + 22i+4 cot(Xj+2,2m+1-2s) 

4i?'m s =-2i+3n 2 j+41sin (Xj-2,2ms1)2s) 
-O,0 - 1 1 2 

jM's 2i+3 -22j+4sl (J22?2) 

-1 = 1 1 Cot(Xj+2,2m+1-2s) 
Mjms 4-co (x?2,2m?12s 22i+4 sin2(Xj+2,2m+1-25) 
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Proof As before, we start with taking inner products of the dual function Xj? in 
the equation 

23+1 -1 

?j+1,2m+1 = _ j,r,k 0k,k + j,m, k Ol k + bJ'rn kj;k +?kjj) 
k=O 

to obtain, by using Theorem 5.1 and Lemma 5.4, 

jM,m,s (\'j, 1,j+1,2m+1) = 2i+2 (SIS ?j+1,2m+l 

23?+1-1 23+I1-1 

- ( S ?>ji I Oj+1,2m+l) -2i Z C(+l) 

22j+2 sn 2(Xj+2,2m+1-2s) 
_____ - ~~~2j+2 

3 23 +1 - 1 

22i+4 E cot(xj+l,s-i) Cot(Xj+2,2m+l-2i). 

Appealing to the cotangent formula (5.13) leads to 

? ? 1 3 + -sin 2 (X3+2,2m+-s 

3_23 
+1 1 

+ 223+4 COt(Xj+2,2m+1-2s) E (cot(xj+l,&s) + Cot(Xj+2,2m+l-2e)) 

In view of (5.10) and (5.12), the cotangent sums collapse to a single term, namely 
- Cot(Xj+2,2m+1-2s), and rewriting everything in sine terms yields the desired re- 
sult. 

Inner products with the dual function 4 now give 

1230+ 1 - 1 

aims = ( ?j?1,2m?1) = 22j?3 Cot(x3+l,s-e) sin2(Xj+2,2m+l-2e) 

i=o,#bAs 

3 23 +1 - 1 

+ 223+4 S Cot(x3+2,2m+l-2e)sin 2(Xj+?,5s_) 

(2 + 223+4) Cot(Xj+2,2m+1-2s). 

Rewriting this expression in cotangent terms and applying (5.13) for both sums 
as well as (5.10) and (5.12) results in 

-0,1 1 2 2 
aj,m,s C22+3 2 cot(x3?+l,8-) cot (X3+2,2m+l-2i) 

?22j+3 5 

+ 22j+3 T, cot(Xj+l,s-i) 
i=O.bAs 
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+ 223?4 E Cot(Xj+2,2m+l12e) cot2 (Xj+,s_l) 

3 23+1_11 1 

+ 22j+4 S COt(Xj+2,2m+1-2e) + (2 + 2-j+4) COt(Xj+2,2m+1-2s) 

e=o,#+s 

2j+1 _l 

=--+3 EII Cot(Xj+2,2m+12e) [Cot(Xj+2,2m+1-2s) (cot(xj+?I,Js) 

2j3 

?=O,e#S 

+ COt(Xj+2,2m+1-2f)) + 1] 

3 21+1-I 

+ 2 -+4 E cot (Xj+l,mS) [COt(Xj+2,2m+?-2)) (COt(Xj+je-8) 

- )+ COt(Xj+2,2m+1-2)) + 

1 111~ 

+ ( 22+ tj+32) Cott X+2C2m+1-2s 

- 2 COt(Xj+2,2m+1-2s) 

23?+1_1 

+ 22+4 COt(Xj+2,2m+1-2s) E cot (xj+l?,-s) COt(X+2,2m+1-2i) 

?=O,e#=S 

23?+1 - 1I 

22j+3c Cot(Xj+2,2m+1-2s) E ot (xi+2,2m+l- t2) 

22i+3 ?~~~=O,e#S 

3 23?1 -1 

+ 22j+4 Cot(Xj+2,2m+1-2s) E Cot2(xj+li,s)-S 
e=o,#s 

2 
2 COt(Xj+2,2m+1-2s) - 22j+4 t COt(Xj+2,2m+1-2s) 

232+1 _I 

+ 2j+3 Cot2(Xj+2,2m+1-2s) E (cot (Xj+l,2ms) + COt(Xj+2,2m+1-2)) 

23?+ 1 _ 1 

- 2j+3T COt(Xj+2,2m+1-2s) E (sin -2(Xj+2,2m+1-2f)-l 

?=O,e#7s 

3 2j+1_1 

+ 22j+4 COt(Xj+2,2m+1-2s) E (Sin-2(xj+li-,)- 

=2 Ct(Xj+2,2m+1-2s) - ~2j+T Cot 3(Xj+2=2m+1-2s) 

1 
~~~~~~~~23+1 _ 1 

- -22j+3~ COt(Xj+2,2m+1-2s) E sin2 (Xj+2,2m+1-2V) 

3 2j+'l_ 
+ 22j+T cot(Xj+2,2m+1 2) 1: sin2 (Xj+2,t-s ) 

i=oA7AS 
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Formulae (5.9) and (5.11) from Corollary 5.1 complete this step. 
The wavelet terms are determined just as for Theorem 6.1 by evaluating the 

decomposition formula and its derivative at the knots xj,8. O 

Theorem 6.3. For any j c No and m = 0, .. , 2i+1 - 1, we have 
2?+1 _1 

q$j~1,2m = S 1,0 0 +a1 q$. iN 1 
(aim,sj,s + a, 'mSoS + bj% s,5 s + bj'm,s 4i,s) 

s=O 

where for s = 0,... , 2j+? - 1 the decomposition coeffcients are given by 

1,0 Ii 1 
am,mS = 0, a' = 

4m,S 
+ 2j+3' 

10 1,1 31 
bjm,s 0, bjm's = 4 m,s-2i+3 

Proof. Again, taking inner products with dual functions is the essential step. We 
have 

1'0 K S?i0 ?,1 ) 

= - 22+3 (1 - 5s,m) cot(Xji+l,m-s)- (1 j+1,2m) 

23?+1 1 1 

- 2 S+ cot(Xi+?,s-')(-24j+6 + 23j+4 &e,m) = 0, 

while 

aj, SI O?j, ?>+1,2m ) 

2j+1 _l 

22_+4 

I 

cot(xi?i,8e) cot(xi?i,me) 

22j+4 lst .11mf 

t=o,eS,e# 

m 

2j+1 _l 

+2j+1 5 sin42(xji,5_e)(-24i+6 + 23j+4 &em) 

t=O,#+As 

3234j+ + 2 2j(--4+ 23j+4&s,m) 

2j+1'1 1 1 
+ E 22j+2( 6 + &,m) 

e=o 

1 2j+1 1 

22j+4 
E cot(xj+?,8e) cot(xj+?,m-e) e=O,es,e#m 

1 2j?1'1l 
22X,2+_1 

_ 

-2X+,gm 

23i+5 I sin (xi?i, -) + 22j+3 (1 -s,m) sin2(xi+i,s.m) 

2j2 + 23j+5 )+3(1 + 223)s,m + j+3' 

Replacing the cotangent sum as in the proof of Lemma 5.3, using the formulae 
(5.9) and (5.11) from Corollary 5.1 and a straightforward computation conclude 
this step. The computation of the wavelet coefficients follows as in Theorems 6.1 
and 6.2. o 
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Theorem 6.4. For any j c N0 and m = 0,..., 2+1-1, we have 

2j+1 _l 
1 ~ ~~ 1,0 0 11 1 - 1 

?j+1,2m+l = S a q5? + 8 q,s + bJ,m,s j,s ? + bj,,s'J,3), 
s=0 

where for s = 0,... , 2i+1-1 the decomposition coeffcients are given by 

a1,1 = - 1 COt(Xj+2,2m+1-2s), bj,m, s = 22j+3 

am,3 2i+3+ 22I+4 sn -2(Xj+2,2m+1-2s)i 

itm, (?s ?)j+t(2)1 

1j++ 1 

=-m,s ? Slo(Xj+2,2m+1-2s ) 3 

wh 2l+3e 

2j+l _ ~ 2j+ 

Proof. Finally, one obtains 

-1,0 /TOil 
j,m' K,S j+1 ,2m) 

22+ S cot (xy+1, s _) cot (Xj+2,X2m+ 1-2t) 

1 2j+l~1 1 1 1 21 

3l5 
sin-2(xj+i,s#) - 2ij+- 3(2i+2 ? 

3j5 

A final application of the cotangent formula (5.13) as well as (5.9), (5.10) and (5.11) 
yields 

aj'm s = 1j+4 E [tt( j+2,2m+1-2s) (cot(x + s,2m ) + C ct(Xj+2,2m+1-f)) + 1] 

- 2 13(22+2 _1). _ - 3(2j+2 ? 23j+54 

The wavelet coefficients are obtained by interpolation as in the previous theorems.O 

Using the notation and definitions introduced in ?4, we can now completely 
describe the 16 circulant submatrices that constitute the decomposition matrix D3. 
Indeed, D= has the structure 

( 3 -21 -2-j3Ej -T 2-2Ij+2-?3Ej 22T 

2 22j-4 f 22TT+224UT -2-3E -2-2-4S -2-2T=T2 2OU U 

222 1 a 
l 

230 5 sin2 2Xj __23+2 
_ 

3E3 0 32-2Ij-25 3E 

\ -2-2-3Tf -2 3Ej-2-2-4S 2-23T2 
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where the submatrices are defined in ?4, except for Tj = (cot(xj+i,,-n))n,s. 
As Vj+i = Vj @ Wj, a function fj+l E Vj+i can be written uniquely as 

f3+1 = f3 +gj, with f3 E V3 and g3 E W. 

Using the basis functions of these spaces, one obtains 

2j +2_1 

fj+i = (cOij+l 
0 

?c1j+lq0s ) 
s=O 

2j+1 _l 2j+1 _ 

fi = 5 (Cs'j0q$ + Cl'jq),s and g3 = 5 (d? jg,0 + dl,j 21) 
s=O s=O 

Using coefficient vectors C= (C, cI ... IC+1 - )T for i = 0, 1, respectively, 

as well as d= (d3, dl',... ,I a I)T, yields the representations 

fj+=cX i T'1 C1+> T 1+ f3 = cOT(o + cj1T(j I and g- = d7 T? + d 1TJ 

Since cj+lj(j+lTpj+l, the matrix form of the decomposition rela- 
tion yields 

fj+i ( ((P3cj+if" (P3jCj+i) ) (F +1)= (Pjc. +)T (Pcl+)T) Di 

On the other hand, we have 

(DO 

~~3~~3= (q ClT doT d1T (\ 
fj + gj 3 (Cj c) dj 0j)(t ~~~~ ~~~~~~ 

Comparing coefficients and taking the transpose, we finally arrive at the matrix 
form of one step of the decomposition algorithm, 

Multiplying by the inverse (D)1= CT yields the matrix representation of one 
step of the reconstruction algorithm, 

( P1 CQ 1) 

=PDc> 
do 3 

pi C~~~~ 
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Altogether we obtain the following algorithms: 

Algorithm 1 (Decomposition). 

Input data: Function values and derivative values for some predetermined level 71, 

k7r k7r d f ( (k7r? f 
- - and f -~~ (L)' , k = 0,..., 12'7+ - 1. 

Step 1: Set 

c0 and c= (f 
~~~ ~k=0 = 

Step 2: Repeat for j = - 1,... , 0 the computation 

Output data: The wavelet coefficients d?and djl for j = 0, ... ., 7 -1 and the 
lowest-level scaling function coefficients c8 and cOj. 

Algorithm 2 (Reconstruction). 

Input dlata: The wavelet coefficients dj? and djlforj =O, . .., 7-1 and the 
lowest-level scaling function coefficients c8 and cO1. 

Step 1: Repeat for j = 0,... ,~- 1 the computation 

d 0 3 pi~ c0 

d 
1 ~ I 

Output data: The scaling function coefficients on level 71, i.e., c? and cl. For 
perfect reconstruction, these are the vectors 

Note that the efficiency of these two algorithms depends essentially on the proper 
implementation of the matrix/vector multiplications using Fast-Fourier-Transform 
techniques. As in [6, Chapter 3], the circulant submatrices of Cj and D3 can be 
factored into the product of some so-called Fourier matrices and the diagonal matrix 
of the eigenvalues, which can be computed directly. All the necessary computations 
for these factorizations only need to be done once for a predetermined number of 
levels. Thus, Algorithms 1 and 2 need e(j2j) operations, which is best possible 
for this type of matrix calculations, but this does not realize the best possible 
pyramid algorithms of order e(2j) available for some other wavelet schemes. Thus, 
this fully computable trigonometric multiresolution analysis with explicit algebraic 
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formulas yields "almost optimal" complexity. Another algorithmic advantage of 
the interpolatory approach is the simplicity of finding a suitable projection onto 
Vj, just by function and derivative evaluation in the dyadic nodes. 

7. CONCLUSION 

Figure 1 shows the two scaling functions q4,16 E V4 and 41,16 E 14 and Figure 2 
the two wavelets 4'?416 c W4 and 4,16c W4. Observe their respective interpolatory 
properties for the knot sequence X4,n = ' for n = 0,... ,31. Recall also that the 
scaling functions and wavelets at higher levels are not just scaled versions of the 
ones at level zero, owing to their interpolatory properties. 

Figures 3, 4, 5 and 6 illustrate the use of trigonometric wavelet decompositions 
to detect discontinuities in higher-order derivatives of a function. In this case, a 
cubic B-spline with equidistant knots at {1, 2, 3, 4, 5}, i.e., 

x E [0, 1], 

6 (X - W)3, x E (1,2], 

: (-3(x - 1)312(x - 1)2- 12(x - 1) + 4, x E (2, 3], 

(-3(5 _ X)3 + 12(5 - x)2 - 12(5 - x) + 4, x E (3, 4], 

6 (5 _ 
X)3, x E (4,5], 

0, xE (5,2-r] 

(properly periodized to generate a 27r-periodic function), was interpolated by an 
element of V4o (Figure 3) using the operator L1o of Definition 2.3. The breakpoints 
of the spline, where its third derivative has jump discontinuities, can be clearly de- 
tected in both wavelet components, i.e., the one corresponding to the interpolation 
of function values (WO in Figure 4) spanned by the functions 40, nand the one cor- 
responding to the first derivative values (WI in Figure 4) spanned by the functions 
'9 n created by one decomposition step and shown in Figure 4. The detection ef- 
fect is more and more blurred in subsequent decomposition steps, as illustrated by 
the wavelet parts for the levels 8 and 7, shown in Figures 5 and 6. In a whole series 
of numerical tests it always happened that both wavelet components (for function 
values and derivative values) showed similar edge detection capabilities. 

As an outlook on further ongoing research, recall from [11] that Lagrange in- 
terpolation for spaces of the type span{T2i1, cos 23x} is associated with wavelets 
that interpolate in the midpoints of the underlying node sequence. On the other 
hand, the Hermite approach of this paper for spaces of the type span{T2V-1, sin 2jx} 
gives rise to wavelets that interpolate fundamental data in the given nodes. The 
regularity of trigonometric Hermite-Birkhoff interpolation on equidistant nodes has 
been thoroughly investigated in [2]. For a proper choice of interpolation nodes, 
nested sequences of spaces spanned by Hermite-Birkhoff interpolants can be found. 
Consequently, this poses the question as to what kind of interpolatory behavior the 
wavelet functions spanning the corresponding relative orthogonal complements will 
possess. This problem is currently under investigation. 
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APPENDIX 

In order to prove Theorem 2.3, a suitable inequality of Marcinkiewicz-Zygmund 
type is needed. Although it is possible to derive the following Theorem A.1 as a 
special case of the general investigations by Y. Xu [16], a direct proof will be given 
for the sake of completeness and in order to illustrate the behavior of the constants 
involved, which cannot be easily obtained from the general result. 
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For a trigonometric polynomial T, consider the following expressions, where 
1 < p < oo (with the usual supremum modification for p = oc): 

(T 1 j27 lT(x) Pd /p 

and 

/IIP, j1 2 TjX+k) 1 

where the Xj,k's are the equally spaced knots introduced in ?2. 
An inequality by Nikol'skii [15, Chapter 4.9] states that for 1 < p < oc and any 

T E Tn 

(*) ITIp < sup IT(x - Ni )IP) < (I + Nr)urTIIP 

Theorem A.1 (Marcinkiewicz-Zygmund type inequality). For a trigonometric 
polynomial T E Vj and 1 < p < oc, it holds that 

+ )(JTIIPj + 2jVT'Hjp,j) < HITIHP < JITIIP j + Cp,j IITI I3 j 2(1 + 2ir) 2+1 2j+1 

with the constant Cp,j depending only on p for 1 < p < oc, and Cp,j = j Cp, for a 
constant Cp depending only on p, in the cases p = 1 and p = o0. 

Proof. The full-length formulation of the statement of the theorem is 

1 4 2J12j+1 ( kP (2+1 V P) } 

2j+1 -1 

< (Uk?qk + Vkq4,k) 
k=O p 

? { (2x1 1 jUk ) +c P, ((+l(P+1) j oVk) p} 

For 
2j+l_1 

T = 5 (Ukqj$ k + Vkq 4k) 

k=O 

inequality (*) yields 

/ 
1 

1 
/lp3 2(23?1 - 

5+ jUk) ?p (1? 2j+1 JTI 
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as well as in combination with the classical Bernstein inequality 

(1 23+_2 1 \ l 

2+1 E VS IklP) <(1 + 27r) IT'llp < (1 + 27r)2j+l1jjTJp, 
k=O 

i.e., the left inequality of the theorem. 
For the other inequality, we split up as follows: 

2j+l1' 2i+1-1 

|ITIIp < || S Uk bk,k IIP + 11 S Vk44k IIP 
k=O k=O 

By Hdlder's inequality (with I/p + l/q = 1), one obtains for the second term, if 
1 < q < 00, 

ii l- 5 V 2 c/$11 /2J+1 1 A _k y~~~: j2lr vkP) ~~~ p/q d)1/p 
11 E VkOj I ( 

l 
lVklP) 10ijkl dx) 

k=O k (2 k1=Ei 

((? 1 2i /2+r 1 2j+p/q 

< 231 JIT'Jl (1 (1 z J,k4i d dx ~2rr I 1\i+1 2~'-l p/q 1/p 

<23+1 ~ ~ 27 j+- 

llT'l~~(~ 2ir (( i)l,lq x 1/p 

< 2i+1 llT'Ilp,j (1 + 221) l0ls,Iqx 

where (*) was used again. 
Similarly, one can also use (*) to produce the analogous final estimates for q = 1 

and q = oc. The norm of q40 now behaves as stated, i.e., it is a constant depending 
on p for 1 < p < o0, while for p = 1 and p = oo an additional logarithmic term 
appears (note that log 2 = j), see for example [17, Vol. I, Ch. 2.12 and 13]. 

It remains to investigate the behavior of the first term. Again by Zygmund [17, 
Vol. II, Ch. 10], there exists a function g E Lq2 with llgllq = 1 such that 

2j+1 1 1 27r 2j+1 1 
ilk IIP = 27r2?X E ukcj,k(t)g(t)dt? 

k=Ok= 

and with H1lder's inequality 

2j+'-l 1 21r ll1q 
2,,,1 , 7 j1,n k 

. 
Mg...... 
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Jensen's inequality yields 

( 23+'1 -1 ll) q 

< ( 1 E 1 X 2j+1d (t)dgt)lqd) =lg (1 (1 k=O =HH( 

using the positivity of sq$j(t) and the fact that 2__ 0 kl(t) = 1, as Lj repro- 
duces constants, thus completing the proof of Theorem A.1. 0 

Applying Theorem A.1, one can now prove Theorem 2.3, following exactly the 
steps as given in the general situation by Xu [16, ?3]. 
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